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Abstract

Emotions are inherently complex — situated inside the brain while being influenced by conditions inside the body and outside
in the world — resulting in substantial variation in experience. Most studies, however, are not designed to sufficiently sample
this variation. In this paper, we discuss what could be discovered if emotion were systematically studied within persons ‘in
the wild’, using biologically-triggered experience sampling: a multimodal and deeply idiographic approach to ambulatory
sensing that links body and mind across contexts and over time. We outline the rationale for this approach, discuss challenges
to its implementation and widespread adoption, and set out opportunities for innovation afforded by emerging technologies.
Implementing these innovations will enrich method and theory at the frontier of affective science, propelling the contextually

situated study of emotion into the future.
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Emotions are situated and multimodal: they unfold over time
as the brain continuously converses with the body and the
external world. Given this complexity, instances of the same
emotion category (e.g., ‘anger’) are highly variable across
individuals as well as within individuals across contexts.
This variation is documented by a growing number of stud-
ies and meta-analyses of brain activity (e.g., Doyle et al.,
2022; Westlin et al., 2023), peripheral physiological activity
(e.g., Hoemann et al., 2020; Siegel et al., 2018), facial mus-
cle movements (e.g., Barrett et al., 2019; Duran & Fernan-
dez-Dols, 2021) and other behaviors (e.g., Tsai et al., 2006;
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Wake et al., 2020). Variation also exists in affect (e.g., pleas-
antness, activation; e.g., Wilson-Mendenhall et al., 2015)
and appraisals (e.g., novelty, control; e.g., Kuppens et al.,
2003), and variability in all these is magnified by known
individual and cultural differences (e.g., Hoemann et al.,
2023; Mesquita, 2022). While few would deny the exist-
ence of variation in emotion by situation, person, and cul-
ture, studies are still rarely designed to look for it (Barrett,
2022). In this paper, we consider what might be discovered
if emotion were systematically studied by sampling people
deeply ‘in the wild” using biologically-triggered experi-
ence sampling — a multimodal and idiographic approach to
ambulatory sensing that links body and mind. We outline the
rationale for this approach, propose opportunities for inno-
vation with emerging technologies, and consider the chal-
lenges and possibilities this approach brings to the frontier
of affective science.

Biologically-Triggered Experience Sampling

Instances of emotion arise as a complex ensemble of fea-
tures. Some of these features are biological (e.g., physiologi-
cal and chemical changes, skeletomotor movements), some
are mental (e.g., goals, appraisals, affect), and some are con-
textual (e.g., environmental conditions, social interactions;
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Barrett, 2022). These features are in constant interplay with
one another. For example, changes in immune function influ-
ence thoughts and feelings, which in turn influence interper-
sonal outcomes (for discussion and relevant references, see
Barrett, 2017; Shaffer et al., 2022). Interrelationships such as
these emerge as the brain coordinates and regulates the inter-
nal bodily systems to meet the predicted metabolic needs
required to interface with an ever-changing external world
— a process known as allostasis (Sterling, 2012). Allostasis
is a brain-wide phenomenon (Barrett & Simmons, 2015;
Kaplan & Zimmer, 2020; Kleckner et al., 2017; Sennesh
et al., 2022; Sterling & Laughlin, 2015) and all experiences
(e.g., perceptions, cognitions, emotions) are conditioned
on it (Barrett, 2017; Ganzel et al., 2010). The central role
of allostasis in emotion also provides an explanation for
the observed variation in the features of these experiences
within and across individuals: the activity of various bodily
systems is being coordinated in a highly context-sensitive
manner, to meet immediate situation-specific needs.

This variation has practical implications for study
design, measurement, and analysis in affective science.
Situation-dependent relationships between biological and
mental features require methods that densely sample sig-
nals from multiple modalities (e.g., self-report, physiol-
ogy, movement). However, most of what is known about
emotion is based on instances elicited at a single point in
time in lab-based settings via stimuli that do not reflect
the complex variations and dynamics of the real world.
Studies using experience sampling and other ambulatory
sensing methods solve this problem by capturing momen-
tary experiences over time and in daily life. In principle,
these methods maximize the diversity of experiences that
can be observed (Ibanez, 2022; Wilhelm & Grossman,
2010), and make it possible to characterize context- and/
or person-specific patterns in features. Yet most experience
sampling studies rely on randomly triggered prompts that
are not guaranteed to capture instances of emotion or other
allostatically-relevant changes in the body and may miss
rarer, affectively intense instances.

Biologically-triggered experience sampling addresses
this gap by assessing mental and contextual features at
moments when there are notable changes in ongoing bio-
logical activity. By initiating sampling based on these shifts
in bodily conditions, this approach can more selectively
target instances of emotion as they occur throughout daily
life. In our own proof-of-concept study (Hoemann et al.,
2020), continuous electrocardiography (ECG), impedance
cardiography (ICG), and accelerometry were collected and
used to trigger prompts whenever an integrated smartphone
app detected sustained increases or decreases in the time
interval between heartbeats (interbeat interval; IBI) in the
absence of major movement or posture change. At each
prompt, participants reported on their current experience,

including freely-generated emotion labels and rated valence
and arousal. Consistent with past work showing pervasive
variation in emotion, our unsupervised machine learning
analyses revealed patterns of physiological change that var-
ied across individuals and that mapped in a many-to-many
relationship with emotion words and affect ratings (Hoe-
mann et al., 2020). Other recent studies have examined trig-
gering prompts based on increases in electrodermal activ-
ity (EDA; Van Halem et al., 2020), decreases in heart rate
variability (HRV; Schwerdtfeger & Rominger, 2021), and
motoric features such as posture and gait (Giurgiu et al.,
2020; Kanning et al., 2021).

Opportunities for Innovation

Relative to existing lab-based and ambulatory approaches,
biologically-triggered experience sampling generates lon-
gitudinal, within-person data sets that integrate multiple
modalities around biological changes of interest. The field
has much to gain from this approach, especially as new
measures become available and easier to use. In this sec-
tion, we highlight two opportunities for innovation, where
biologically-triggered experience sampling can make a sub-
stantive contribution to understanding emotion.

First, increasing the number of modalities sampled will
make it possible to model emotion in higher dimensional-
ity, and answer fundamental questions about how biologi-
cal, mental, and contextual features are related over time.
Our initial implementation of biologically-triggered experi-
ence sampling, for example, could be augmented by exist-
ing and emerging ambulatory measures to track meaningful
emotional changes in daily life. Table 1 provides example
technologies and the feature(s) monitored by each. These
additions can also push forward translational and clinical
research. Because the brain continually performs allostasis
and all experience relies on this basic process, allostatic dys-
regulation is coming to be understood as a transdiagnostic
vulnerability to mental and physical disorders. Consistent
with this hypothesis, growing evidence demonstrates that
symptoms of major depressive disorder (e.g., distress, con-
text insensitivity, motor retardation) are associated with per-
sistent problems in energy regulation (Shaffer et al., 2022;
see also Tian et al., 2023). Coupling ambulatory sensing
technologies that assess immunologic and metabolic func-
tion (Table 1) with those assessing peripheral physiological
(e.g., cardiovascular) activity can further the longitudinal
and situated study of brain-body health.

Second, innovations in biologically-triggered experi-
ence sampling offer a unique opportunity to create and
test real-time, person- and context-specific interventions,
which can revolutionize the detection and management of
stress or even clinical symptomology. Recent studies have
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Table 1 Emerging ambulatory sensing technologies

Technology

Features monitored

Exemplar Reference

Electrodermal activity (EDA) sensors integrated into
shoes or socks

Wearable biometric vests
Multimodal earbud sensors

Smartphone sensors and applications that capture situ-
ated behavior

Smartphone sensors that assess the external environ-
ment

Blood pressure (BP) estimated using smartphone opti-
cal sensors

Mobile eye tracking
Mobile electroencephalography (EEG)

Continuous glucose monitoring (in people without
diabetes)

Skin-interfaced wearables that collect eccrine sweat
Ingestible capsules that assess gastrointestinal function

Long-term EDA

Heart rate (HR) and heart rate variability (HRV), respi-
ration rate and volume, step count and cadence

Photoplethysmography (PPG), accelerometry, core
body temperature

Mobility, sleep, communication habits

Location, weather, carbon dioxide concentration

On-demand BP

Fixations

Event-related potentials (ERPs; e.g., P300), frequency
band power/asymmetry

Real-time glucose levels

Momentary cortisol, cytokines
Gut pressure, pH, temperature

Kappeler-Setz et al., (2013)
Haddad et al., (2020)
Rahman et al., (2022)
Harari et al., (2017)

Scholz et al., (2017)
Gordon and Mendes (2021)

Dillen et al., (2020)
Bleichner and Debener (2017)

Liao and Schembre (2018)

Ghaffari et al., (2021)
Monti et al., (2021)

combined EDA with skin temperature data to predict stress
responses in situ (Kyriakou et al., 2019), used HRV to iden-
tify moments when there may be heightened psychologi-
cal vulnerability (Schwerdtfeger & Rominger, 2021), and
tracked self-reported stress in everyday life alongside smart-
phone-estimated blood pressure (Gordon & Mendes, 2021).
These innovations enable targeted sampling of stressful
experiences, and can also inform the delivery of just-in-
time adaptive interventions (e.g., Nahum-Shani et al., 2018;
Schneider et al., 2023). Using biological signals to push
content when people are exhibiting increased physiological
arousal can supply tools when they may be most effective.
Such interventions could ultimately scaffold people’s flex-
ible application of emotion regulatory strategies, by helping
them use the right tool for the situation (Blanke et al., 2020;
Kalokerinos et al., 2019). If content included information
about ongoing biological activity, this may enhance skills
such as emotional granularity (i.e., emotion differentiation)
by making people aware of features they can use to distin-
guish different types of emotion experiences in different
contexts (Hoemann, Nielson et al., 2021).

Challenges and Possibilities

Biologically-triggered experience sampling involves prac-
tical, methodological and pragmatic challenges. Table 2
outlines considerations for key decision points in study
design and data analysis. More generally, a multimodal
and idiographic approach to ambulatory sensing requires

@ Springer

an interdisciplinary research team, well-organized pipe-
lines for processing, integrating and curating data, and
participants who are willing to be intensively sampled
and maybe even interested in the results (e.g., Gordon &
Mendes, 2021). It also requires augmenting the funding
mechanisms that support this research vision, creating
different incentive structures within the practice of sci-
ence, and changing the ways we train the next genera-
tion of scientists. The scale of these challenges requires
system-level innovation and so requires buy-in from the
field writ large.

Human experience emerges amid dynamically changing
signal arrays in the brain, in the body, and from the world.
Sampling and modeling this landscape are challenging,
but necessary to understand the nature of emotion. While
each of the innovations outlined above adds incremental
value to the study of emotion in the wild, their real power
will be realized from implementing them in concert. A
robust, generalizable science of emotion requires sam-
pling individuals across multiple situations in daily life
beyond the standardized and restricted experiences evoked
in the lab, measuring deeply by simultaneously monitoring
mental (e.g., affect, appraisals), biological (e.g., metabolic
activity, posture), and contextual features (e.g., ambient
temperature, social interaction), and leveraging analytic
approaches that capture complex yet reliable patterns of
feature variation. Such an approach is required if we are to
determine how different features structure the variation in
emotion, allowing affective science to reveal generalities
rather than presume them.
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