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Abstract
Commercially available consumer electronics in (smartwatches and wearable biosensors) are increasingly enabling acquisition of
peripheral physiological and physical activity data inside and outside of laboratory settings. However, there is scant literature
available for selecting and assessing the suitability of these novel devices for scientific use. To overcome this limitation, the
current paper offers a framework to aid researchers in choosing and evaluating wearable technologies for use in empirical
research. Our seven-step framework includes: (1) identifying signals of interest; (2) characterizing intended use cases; (3)
identifying study-specific pragmatic needs; (4) selecting devices for evaluation; (5) establishing an assessment procedure; (6)
performing qualitative and quantitative analyses on resulting data; and, if desired, (7) conducting power analyses to determine
sample size needed to more rigorously compare performance across devices. We illustrate the application of the framework by
comparing electrodermal, cardiovascular, and accelerometry data from a variety of commercial wireless sensors (Affectiva Q,
Empatica E3, Empatica E4, Actiwave Cardio, Shimmer) relative to a well-validated, wired MindWare laboratory system. Our
evaluations are performed in two studies (N = 10, N = 11) involving psychometrically sound, standardized tasks that include
physical activity and affect induction. After applying our framework to this data, we conclude that only some commercially
available consumer devices for physiological measurement are capable of wirelessly measuring peripheral physiological and
physical activity data of sufficient quality for scientific use cases. Thus, the framework appears to be beneficial at suggesting steps
for conducting more systematic, transparent, and rigorous evaluations of mobile physiological devices prior to deployment in
studies.
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Recent advances inminiaturized hardware andwearable technol-
ogy are enabling the use of smartwatches and mobile sensors to
measure cardiovascular, electrodermal, and accelerometric data

in empirical studies (Goodwin et al., 2008; Mukhopadhyay,
2015; Patel et al., 2012; Strangman et al., 2018). These telemetric
devices (i.e., wearable equipment that often contain multiple sen-
sors wherein different dependent variables can be measured)
have several appealing affordances for studies that emphasize
longitudinal or within-subject designs. Laboratory experiments
typically explore inter-individual variability across a restricted
number of scenarios, within tightly controlled environments,
using relatively homogenous samples (Molenaar, 2004).
Although useful for experimental control and inference, these
paradigms necessarily restrict the study of context, temporal dy-
namics, and heterogeneity within and across individuals (Conner
et al., 2009; Fisher et al., 2018; Patel et al., 2012).

In contrast, telemetric devices can capture intensive longitu-
dinal data across time and real-world contexts both within and
across individuals (Myrtek, 2004). Such capabilities are advan-
tageous because they are more likely to capture events that are
rare and unpredictable (e.g., panic attacks or cardiac
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arrhythmias; Leibold & Schruers, 2018; Mittal, Movsowitz, &
Steinberg, 2011; Mittal et al., 2011), events that unfold over
longer periods of time (e.g., sleep across days or metabolic
changes with physical activity; Gao, Brooks, & Klonoff,
2018; Sano, Picard, & Stickgold, 2014), or salient events that
may be unethical to elicit experimentally (e.g., receiving news
about the death of a loved one; Wilhelm & Grossman, 2010).
Ambulatory physiological recordings have also demonstrated
utility performing dynamic assessments of symptoms over time
in patients with cancer (Savard et al., 2013), Parkinson’s dis-
ease (Moore et al., 2008), autism spectrum disorder (Goodwin
et al., 2019), borderline personality disorder (Ebner-Priemer
et al., 2008), and seizures (Michel et al., 2015). Finally, tele-
metric devices are also beginning to be used to deliver inter-
ventions to treat symptoms or disease (e.g., exercise
interventions for patients with cancer; Schaffer et al., 2019).

Despite the potential, availability, and popularity of tele-
metric devices, development of mobile sensors consistently
outpaces the rate of independent validation of these technolo-
gies against gold-standard, research-grade devices (Peake
et al., 2018). The fact that validation efforts lag behind hard-
ware development is a critical challenge given the importance
that scientists, practitioners, and other conscientious users
place on measurement fidelity. Moreover, traditional valida-
tion studies are often constrained by scope and context depen-
dence. The acquisition of valid data from a telemetric device
depends on a number of factors, including user experience and
signal quality. Extant validation studies typically limit their
assessment to one of these two categories, focusing exclusive-
ly on either user experience (e.g., Beaukenhorst et al. 2020) or
signal quality. Additionally, those that focus on signal quality
tend to emphasize either qualitative measures (e.g., McCarthy
et al., 2016) or quantitative measures (e.g., Kasos et al., 2019;
Straiton et al., 2018; van Lier et al., 2019; Weippert et al.,
2010). While each of these categories of validation are infor-
mative and useful in their own right, variability in approaches
can be intimidating for newcomers interested in utilizing am-
bulatory measurement in their research.

While science benefits from published guidelines, they too
can be limited in scope by focusing on specific signals, statis-
tical methods, or analytic decision criteria (Parati et al., 2010,
2014; van Lier et al., 2019). Rarely is one set of criteria suf-
ficient for establishing validity and utility in science. In the
present paper we attempt to address these obstacles by offer-
ing a multi-level, general-purpose framework for selecting,
testing, comparing, and documenting the performance of
wearable peripheral physiological devices for specific use
cases. In so doing, we hope to deliver a more comprehensive
conceptual scheme for establishing sufficient accuracy, preci-
sion, and feasibility of these emerging research tools in scien-
tific studies.

Sufficient accuracy can be demonstrated when signals
from a new sensor are shown to be comparable to those

collected by a ‘gold-standard’ measurement of the same out-
come variable. However, and critically, what is considered
“sufficiently accurate” depends on both the type of data being
collected and the specific questions being posed. With respect
to data type, there are some measurement situations, such as
determining whether a new blood pressure monitor is suffi-
ciently accurate, where professional organizations or other
expert panels set community standards (Asmar & Zanchetti,
2000; JCS Joint Working Group, 2012; Parati et al., 2010,
2014). Whenever available, these guidelines should be
adopted. With respect to constraints posed by research ques-
tions, these may reflect, for example, the desired use of data in
subsequent analyses. For instance, heart rate (HR) is most
traditionally derived from an electrocardiogram (ECG) signal,
but may also be derived from a photoplethysmographic signal
(PPG; the optical HR measure available in most wrist-based
devices). Whether a PPG-based measure of HR is sufficiently
accurate depends upon the desired use of HR as a dependent
variable. For example, if the study goal is to measure high-
frequency heart rate variability (HF-HRV; sometimes called
respiratory sinus arrhythmia or RSA), then PPG may lack
enough temporal precision to detect heartbeats with sufficient
fidelity. In this case, ECG-derived HR with a sufficiently high
sampling rate is the better measure (Task Force of ESC and
NASPE, 1996)1. On the other hand, if the goal of a study is to
obtain a sufficiently accurate measure of mean HR over larger
windows of time that minimizes recording burden on partici-
pants, then the accuracy of detecting HR via PPG may be
sufficient. In either case, researchers benefit from clarifying
their research questions and analysis plans before determining
their criterion for “sufficient accuracy.”

In addition to determining sufficient accuracy, it is impor-
tant to choose a device with sensors that have sufficient
precision (i.e., signal-to-noise ratio), reliability (i.e., reproduc-
ibility), and feasibility (given a specific population, purpose,
or setting) for the measure of interest. Many of these consid-
erations can affect data quality and therefore should be con-
sidered when choosing a device to answer a given research
question.

Belowwe describe a step-by-step framework (see Fig. 1) to
guide the selection and assessment of ambulatory physiolog-
ical devices with respect to these criteria (accuracy, precision,
reliability, and feasibility). We then exemplify the use of this
framework by reporting on two validation studies conducted
by our team. If followed, our framework can help researchers
consider various elements of device choice and validation in
order to more confidently and reliably answer their own
unique research questions.

1 In fact, we and others have argued it is the only sufficiently accurate measure
(see Berntson et al., 1997).
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Step 1. Identifying signals of interestA full discussion on how
to determine signals of interest is beyond the scope of this
paper; however, we provide some brief guidance in Table 1.
In addition, we suggest that readers refer to previously pub-
lished in-depth resources for additional guidance (Boucsein,
2012; Cacioppo et al., 2017; Stern et al., 2000). Of most im-
portance, signals of interest should be chosen on theoretical
grounds or based on prior literature.

Step 2. Characterizing intended use case Designing an ambu-
latory study is often an exercise in balancing the desire for rich
data (e.g., longer recording duration, greater number of sig-
nals) with higher participant burden and concerns about com-
pliance (e.g., whether participants wear the device(s) as

intended). Consequently, considering intended use cases
before choosing and evaluating specific ambulatory devices
can save time and mitigate potential compliance issues.

For each device, researchers should consider user com-
fort, obtrusiveness, user interface complexity, and data pri-
vacy. For example, the comfort of ambulatory devices may
depend on body mass index (BMI), sex or gender (e.g.,
body shape or clothing styles/preferences), daily routines
(e.g., exercising, bathing, sleeping), visual acuity, or tactile
ability. Bodily location of the device or its sensors could
also affect reliability and validity of collected data (for
example with skin conductance, see van Dooren et al.,
2012). When it is important for sensors to be unobtrusive
or not visible to others, researchers should consider devices

Table 1 Identifying signals of interest commonly measurable via mobile devices

System Signal How to measure

Electrodermal Electrodermal activity
(EDA)

Two electrodes on hands/fingers, feet/toes, wrist, back, or other sites (van Dooren et al., 2012)

Cardiovascular Electrocardiography
(ECG)

Chest strap or a minimum of two electrodes typically on the chest, but perhaps also using the arms, hands,
legs, or feet

Cardiovascular Photoplethysmography
(PPG)

Optical sensor on the ear, finger, wrist, arm, etc. (Allen, 2007)

Cardiovascular Impedance cardiography
(ICG)

Band or spot electrode sensors, typically on chest and back

Respiratory Respiration Respiration belt on chest or via an impedance-based technique via sensors

Physical
activity

Accelerometry (and
gyroscope)

Accelerometer on waist, chest, arms, head, and/or legs

Contextual
factors

Location (GPS)
Temperature
Humidity
Audio recordings
Video recordings

Smartphone or mobile device: GPS, thermometer, humidity detector, audio recording, etc.

Fig. 1 Methodological framework. Seven steps for selecting and benchmarking mobile devices in psychophysiological and physical activity research.
The arrows indicate that results from steps 6 and 7 can inform the design of additional data collection
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that can be placed underneath clothing, while being mind-
ful of potential pressure artifacts on sensors. Researchers
must also consider whether participants need to access
their data themselves (e.g., as is often the case in studies
employing biofeedback) and in what situations participants
should be offered choice about when they are monitored to
mitigate privacy concerns.

Finally, researchers should consider environmental fea-
tures of the implementation context that can impact device
operation or data validity. For example, they should consider
environmental features such as electromagnetic interference,
changes in ambient lighting, temperature, humidity, altitude,
and/or vibration (Strangman et al., 2018; Wilhelm &
Grossman, 2010).

Step 3. Identifying study-specific pragmatic needs
Wearable devices differ in their price, system compatibility,
software features (e.g., proprietary vs. compatible with only
some operating systems), and battery life. It is important to
consider a device’s battery life if many signals are recorded,
the recording time is long, and/or the sampling frequency is
high (Halson et al., 2016). Other device-related features to
consider include: form factor (e.g., where the device is worn;
Halson et al., 2016); wireless transmission needs (e.g., logging
vs. streaming); data storage requirements (e.g., local data stor-
age vs. on a remote server); system functionality (e.g., maxi-
mum number of signals that can be recorded); temporal pre-
cision (e.g., general trends over longer time periods vs. faster
changes at shorter timescales); and dynamic range of the sen-
sors (e.g., large changes in acceleration during sporting events
or vehicular travel vs. small changes in acceleration while
walking or during other activities of daily living). Finally, it
is important to assess whether participants can adequately
place sensors on their own body and use devices correctly,
including whether they can easily access sensor sites, start
and stop recording, and consistently charge devices.

Step 4. Selecting devices for evaluation Device options
change rapidly, so it is important to identify devices through
first-hand experience, recommendations from knowledgeable
colleagues, demonstrations at scientific conferences, and
searches of the scholarly literature. Some companies offer
product demonstrations, which are extremely helpful for
interacting with devices first-hand and receiving manufacturer
guidance to optimize performance. One must also balance the
fact that older devices are sometimes more suitable if they
have been used and validated in published research.
However, older devices might become obsolete, and may be
unavailable for purchase or service/support, or the company
that sold them may no longer exist. Another consideration
when selecting devices for evaluation are data security protec-
tions afforded on the device itself and during transmission of
data between the device to or from the cloud or lab servers

(e.g., encryption). These features should be selected based on
sensitivity of the data being collected and the need for privacy
of such data for users.

Step 5. Establishing an assessment procedure A validation
study should determine the strengths and limitations of differ-
ent ambulatory devices in contexts similar to those in which
they will be implemented (i.e., with similar signals, study
populations, implementation contexts either inside or outside
the lab). It is also useful to compare device(s) across physical
and psychological tasks of varying intensities to test for device
sensitivity, floor and ceiling effects of the sensors, and effects
of different postures. We recommend selecting well-used and
oft-validated tasks wherever possible (for a great example, see
Menghini et al., 2019). This enables a researcher to better
attribute a validation failure to the specific device being tested,
rather than to problems associated with a novel task.
Additionally, we highly recommend obtaining qualitative or
quantitative user feedback in the form of free-response or
survey data. When designing user feedback formats, both
open-ended free response and quantified survey responses
have unique strengths and weaknesses. Open-ended feedback
may unearth unanticipated concerns but can be difficult to
interpret. Survey data can be easier to interpret, but requires
researchers to successfully anticipate relevant concerns, and
also assumes that all individuals utilize survey items identical-
ly. In either case, user-feedback data is invaluable for
assessing participants’ experiences of comfort/discomfort, de-
vice obtrusiveness, and the intuitiveness of user interfaces
(e.g., ease of starting/stopping recording, putting on and tak-
ing off devices either alone or with help) (Nelson et al., 2019;
Spagnolli et al., 2014).

Step 6. Performing qualitative and quantitative analyses on
validation data After pilot data have been collected, we rec-
ommend performing a hierarchical set of analyses beginning
with the assessment of general trends (for similar method, see
Menghini et al., 2019). General trends can be assessed using
simple visual inspection of data (e.g., assessing whether a
signal increases or decreases as expected). Devices without
face validity should not be subject to further testing (e.g.,
erratic signal, unacceptable signal-to-noise ratio, complete in-
sensitivity to change across conditions expected to elicit
change). Once general trends have been established, data qual-
ity should be assessed with respect to a gold-standard device.
Data quality can be assessed using signal-to-noise ratio, mea-
sures of data loss (e.g., missing heart beats), or simple mea-
sures of agreement such as Pearson product–moment correla-
tions, intraclass correlations, or Bland–Altman analyses
(Bland & Altman, 2007; for example decision criterion see
van Lier, et al., 2019). When assessing both general trends
and data quality, we endorse recently published guidelines
which suggest assessment at the signal level (e.g., raw skin
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conductance), the parameter level (e.g., rate of skin conduc-
tance responses), and the event level (e.g., rate of skin con-
ductance responses during lower arousal vs. higher arousal
scenarios) (van Lier et al., 2019). Finally, qualitative data from
user-feedback forms can be explored (e.g., using thematic
coding, simple statistics, or visualization) to unearth partici-
pant concerns in addition to any individual differences which
may have led to usability problems (for examples, see
Beukenhorst et al., 2020; Shcherbina et al., 2017).

Step 7. Conducting power analyses to determine device ac-
curacy Below, we briefly describe two approaches for
conducting power analyses to determine device accuracy
(for a more detailed review see Lakens, 2013). In the first
approach, a researcher can assess a priori the number of data
samples (i.e., instances or individuals) needed to detect signif-
icant variation between dependent variables obtained from a
new device and from a gold-standard device. This approach
requires that researchers determine what they consider to be a
meaningful discrepancy in measures before conducting their
validation study. Critically, what constitutes a “meaningful
discrepancy” may differ based on the dependent variable be-
ing measured, or that variable’s function in subsequent anal-
yses. In the second approach, researchers can first conduct a
small pilot study, and then use collected data to obtain an
effect size estimate. This effect size estimate can then inform
how many samples (again, instances or individuals) would be
needed to observe a statistically significant difference between
two devices for a given power level (often 0.80) and false-
positive rate (often 0.05). In both of these approaches, the
objective is to enable more rigorous inferences by establishing
statistical power before collecting independent validation
data.

Illustrative case Within the bounds of this framework, there
are many researcher degrees of freedom. Ultimately, valida-
tion studies must be tailored to specific signals, use cases, and
research questions. To illustrate how one might use and adapt
this framework to a specific use case, we describe methods
and results obtained in two illustrative studies (detailed in
Table 2). Both of these studies were designed to test multiple
wearable devices for psychophysiological field experiments in
the areas of affective science and health psychology.

Methods

Participants

Ten participants from Northeastern University and the sur-
rounding area completed Study 1 (ages 18–36 years, 8 fe-
male), and another 11 participants (ages 19–37 years, 1 fe-
male) completed Study 2. Per our eligibility criteria, partici-
pants were men or women at least 18 years old who were free

from significant psychiatric, neurologic, or other medical
problems that could place individuals at risk of undue stress,
affect their ability to participate fully in the experimental pro-
tocol, significantly impact their physiological responses, or
adversely impact device testing (i.e., no seizures, head trauma,
diagnosed schizophrenia, mood or anxiety disorder, or autism
spectrum disorder). Participants provided informed consent
under a protocol approved by the Northeastern University
Institutional Review Board.

Procedure

All study procedures were completed in-lab (see Table 2 for
rationale). After enrollment and eligibility screening, we mea-
sured height, weight, and waist circumference. We then
placed the physiological devices shown in Fig. 2 on partici-
pants. Next, participants completed a demographic question-
naire (age, race, ethnicity) followed by a 5-min seated rest
period. In Study 1, participants completed (in fixed order):
(1) a heartbeat detection task (approximately 30 min;
Kleckner et al., 2015;Whitehead et al., 1977); (2) an evocative
image task (Lang, Bradley, & Cuthbert, 2008); (3) a heartbeat
tracking task (Schandry, 1981); (4) a physical activity task
(consisting of 30 consecutive squats); and (5) a series of af-
fective and physical activity questionnaires unrelated to the
current study. In Study 2, following a 5-minute rest period,
participants completed the evocative image task, a physical
activity task (30 consecutive squats), and two trials of a mental
math task (e.g., Quigley et al., 2002). Each of these tasks was
chosen for its demonstrated validity and common usage in
affective psychology. In both studies we removed most of
the physiological sensors after completion of the experimental
tasks and debriefed participants while they completed a final
physical activity task (stair climbing). We then removed the
remaining sensors and provided $30 remuneration for their
time and effort.

Evocative image task

Participants viewed images (53 pictures in Study 1, 33 in
Study 2) from the International Affective Picture System
(Lang, Bradley, & Cuthbert, 2008) for 20 minutes. Each trial
consisted of a variable 3–8-second “Get Ready” period and a
6-second picture presentation, after which participants rated
how pleasant/unpleasant and how activated/deactivated they
felt in response to the prior picture. Images with similar nor-
mative affect ratings were presented in blocks of 10. Study 1
images were normatively characterized as unpleasant high
arousal (e.g., mutilated bodies), unpleasant low arousal (e.g.,
funerals), pleasant high arousal (e.g., sports), pleasant low
arousal (e.g., kittens), and neutral low arousal (e.g., office
supplies). Study 2 images included normatively unpleasant
high arousal, pleasant high arousal, and neutral low arousal.
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To anchor participants’ use of rating scales, the first block of
images in each study contained three pictures: one unpleasant
high arousal (mutilation), one pleasant high arousal (children
on a roller coaster), and one neutral (a basket). One partici-
pant’s data was excluded from analysis because they reported
the images to be too evocative and stopped the picture-
viewing task early.

Physical activity squats task

For the first physical activity task, experimenters guided par-
ticipants in completing 30 squats followed by two minutes of
seated rest.

Mental math task (Study 2 only)

Participants completed two trials of a mental math task
(Quigley et al., 2002), wherein participants were
instructed to subtract the number 7 from 725 and report
their answers aloud as quickly and as accurately as

possible. Serial subtractions were supervised by an exper-
imenter trained to provide feedback (“incorrect”) whenev-
er the participant provided an incorrect answer. Following
feedback, the experimenter prompted the participant to
resume subtractions from the last correct response. The
first trial lasted 60 seconds, after which the experimenter
left the room and a 2-minute resting baseline was record-
ed. Trial 2 of mental math was identical to trial 1, except
the difficulty level of the second trial was determined
based on the participant’s performance during the first
trial. If the participant answered fewer than five responses
correctly in trial 1, then trial 2 was made easier
(subtracting 6 from 847); otherwise the second trial was
made harder (subtracting 13 from 847). Trial 2 was
followed by a second 2-minute baseline.

Ambulatory devices

In Study 1, we tested three ambulatory devices that each
measured one or more of the following: EDA, HR, and/or

Table 2 Details of workflow across the seven steps of our benchmarking framework applied to two empirical studies presented herein

Step 1.
Identify signals of interest

• Devices should collect data relevant to our primary areas of research: emotion and health. Specifically, devices
should be capable of acquiring both heart rate (HR) and electrodermal activity (EDA)—two physiological
measures implicated in subjective arousal and psychophysical stress.

• Because we are interested in deploying devices in real-world settings, devices should also collect 3-axis
accelerometry data (to help account for motion artifacts).

Step 2.
Characterize intended use case

• Devices should be tolerated by healthy young adults during everyday life.
• Devices should be unobtrusive, comfortable to wear, and should not limit participant mobility.
• Participants should not have to access their data, instrument themselves, or make decisions about when/where

they are monitored.

Step 3.
Identify pragmatic needs

• Devices should be financially feasible (less than $500 per unit).
•Devices should have sufficient battery life to record several hours (but not necessarily days) of physiological data

between charges.
• Devices may be located on the wrist, palm, or chest.
• We need to assess differences between wet and dry EDA electrodes (i.e., with and without isotonic paste).
• Devices should be sensitive enough to detect modest to large changes in physiological activity.
• We prefer ability to visualize data in real time to ensure good signal quality prior to deployment.
• We have no explicit preferences about data storage.

Step 4.
Select devices for evaluation

• In Study 1, we tested five mobile devices that measured various combinations of EDA, HR, and/or
accelerometry from the wrist and chest.

• Devices for Study 1 included: Q Sensor device (Affectiva, Boston, MA, USA); the E3 device (Empatica,
Milano, Italy); and the Actiwave Cardio device (CamNtech Ltd., Cambridge, UK).

• Devices for Study 2 included those tested during Study 1, plus the E4 device (Empatica, Milano, Italy) and the
Shimmer EDA device (Shimmer, Dublin, Ireland).

Step 5.
Establish assessment procedures

• We utilized tasks that elicit robust changes in physical activity (squats).
•We utilized well-validated tasks that elicit modest to large changes in psychophysiological activity (an evocative

image task and a mental arithmetic task), comparable to those we expect to occur during everyday life.
• Validation was performed in-lab for comparison against wired gold-standard devices, and to disambiguate

device performance from unanticipated context effects.

Step 6.
Perform qualitative and

quantitative analyses

• Assessed general trends using visual inspection.
• Assessed data quality by estimating signal-to-noise ratio and quantifying data loss.
• Assessed qualitative aspects of device performance in addition to user feedback from participant debriefings.

Step 7.
Conduct power analyses

• Not needed for this work because our primary goals were about general signal trends and not a statistically
rigorous comparison across devices.
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accelerometry from the wrist or chest (Table 3). These
included the Q Sensor device (Affective, Boston, MA,

USA; Poh et al., 2010), E3 (Empatica, Milan, Italy), and
Actiwave Cardio (CamNtech Ltd., Cambridge, UK). Data

MW ECG

MW Ground

MW Resp. Belt

Actiwave ECG

MW EDA

EDA 1

EDA 2

E3, Q

Non-Dominant Hand

STUDY 1

1. Demographic questionnaire
2. 5-min seated rest
3. Heartbeat detection task

4. * Evocative image task
5. Heartbeat tracking task
6. Questionnaires

7. * Squats
8. Stair climb & debrief

STUDY 2

1. Demographic questionnaire
2. 5-min seated rest

3. * Evocative image task 
4. * Squats
5. * Mental math
6. Stair climb & debrief

MW ECG

MW Ground

MW Resp. Belt

MW EDA
E3 (wet, dry)

Shimmer
E4 

Shimmer EDA

Shimmer PPG

LR
Fig. 2 Study flow and device placements for Studies 1 and 2. In Study 1, the position of the EDA 1 and EDA 2 devices (E3 and Q devices) were
counterbalanced across participants. We only present data from tasks that are bolded and starred (*)

Table 3 Devices used in Study 1. Hz = Samples per second for data acquisition; EDA = electrodermal activity; BVP = blood volume pulse; ECG =
electrocardiogram
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from these devices were compared to a research-grade
wired laboratory system from MindWare Technologies,
Ltd. (Gahanna, OH, USA), which served as our gold stan-
dard and which sampled ECG and EDA at 1000 Hz using
BioLab v. 3.0.13 software (MindWare Technologies,
Ltd.) and a BioNex 8-Slot Chassis (model 50-3711-08).
In Study 2, we focused specifically on EDA measure-
ments by comparing five different device configurations
(Table 4). First, we tested for differences in electrode type
using dry electrodes (no isotonic paste) vs. wet electrodes
(with isotonic paste) with the E3 on the wrist. Second, we
tested for differences in recording location comparing
wrist vs. the palm. Third, we compared two additional
devices not tested in Study 1, namely, E4 (Empatica,
Milan, Italy) and Shimmer EDA devices (Shimmer,
Dublin, Ireland). For sampling rates, see Tables 3 and 4.
The Q Sensor had been previously used, so its durability
may have been affected by prior use.

Before testing, each device was time-synchronized with
the computer used to acquire data from the MindWare sys-
tem. The Shimmer device inexplicably did not synchronize
its clock to the computer’s clock despite following manu-
facturer instructions and thus was time-synchronized to the
E4 device’s clock within 100 milliseconds by manually
aligning accelerometer data in the physical activity task
for each participant. This approach for synchronization
should minimally influence results. All of the ambulatory
devices recorded data to internal memory. Although many
of the ambulatory devices tested provided adequate ways to
visualize data pre- and post-acquisition, some did not,
which made it difficult to anticipate future recording issues
during acquisition (e.g., loose sensors). All devices were
used per manufacturer’s recommendations, and all sensors

were worn for at least 10 minutes before recording the data
presented in this manuscript.

Data analysis

Data from each device were downloaded and processed as
suggested by the manufacturer. For EDA data, we distin-
guished between tonic, background skin conductance level
(SCL) trends, and rapid phasic skin conductance responses
(SCRs), and we focused our analysis on SCL and rate of
SCRs. ECG and blood volume pulse (BVP) were analyzed
to obtain inter-beat intervals (IBIs) using MindWare’s HRV
analysis program, and subsequently all results were visually
inspected for general trends.

To determine signal-to-noise ratios for EDA data, we first
calculated the magnitude of the signal as the maximum SCL
minus the minimum SCL during physical activity. Next, we
quantified noise as the standard deviation of the EDA signal
in a relatively stable 12-second segment of data where no SCRs
were evident. After selecting this 12-second segment for each
participant and device, we removed slow trends in SCL by
subtracting the linear best-fit line from the 12-second segment
of data. We ignored data from participants with loose sensors
where signal quality was extremely poor, as these records do
not reflect the true capabilities of the devices under study. Our
strategy for calculating HR signal-to-noise ratios was identical
to that used for EDA data, except the duration of the segment
used to compute noise was 1 second instead of 12 seconds. A 1-
second duration was chosen between heartbeats when the ECG
signal was near its isoelectric line. These analyses and visuali-
zations utilized in-house software programmed in MATLAB
(MathWorks, Natick, MA, USA).

Table 4 Devices used in Study 2. Hz = Samples per second for data acquisition; EDA = electrodermal activity
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Results

Overview

We assess general trends and data quality for EDA data from
all devices during the physical activity task, the evocative
images task, and the mental math task. Next, given our exper-
imental goals, we compare HR and accelerometry data across
devices during the physical activity task. Data from other task/
device combinations are beyond the scope of this paper.
Given the small sample size, we often illustrate data for indi-
vidual participants. Qualitative comparisons and inferences
are included in the discussion section.

Electrodermal activity during physical activity

We expected SCL and rate of SCRs/minute to increase during
squats, and then to decrease during the subsequent two mi-
nutes of seated rest. In Study 1, the gold-standard in-lab
MindWare EDA analysis software revealed the expected trend
in 7 of the 10 participants from Study 1. Of the remaining
three participants, one (#3) appeared to be electrodermally
stabile with a virtually unchanging SCL, one (#4) exhibited
many SCRs but no change in SCL, and one (#8) had poor data
quality due to a poor electrode connection. By comparison,
although the ambulatory EDA devices often showed the ex-
pected pattern of SCL increase during physical activity
followed by a decrease during seated rest, they typically evi-
denced a smaller dynamic range of SCL and many fewer
SCRs (Fig. 3). Specifically, the E3 showed the expected in-
crease in SCL following the onset of squats in 7 of 10 partic-
ipants, and 5 of those 7 participants showed an expected de-
crease in SCL during subsequent rest. Additionally, the E3
was the only ambulatory EDA monitor to detect some SCRs
during squats (in six of nine participants who showedmultiple
SCRs as measured by the gold-standard MindWare device).
None of the other ambulatory devices detected SCR counts/

minute that approached the number detected by the
MindWare device. The Q Sensor device showed an expected
increase in SCL following onset of squats in three of eight
participants, and an expected decrease in SCL during subse-
quent rest for two of eight participants. MindWare had the
highest signal-to-noise ratio (550 ± 506), followed by the E3
(525 ± 660), and finally the Q Sensor (217 ± 359; Fig. 4).

In Study 2, we compared data from dry vs. wet EDA elec-
trodes using the wrist-based EDA devices. The E3 with wet
sensors performed best, showing the greatest changes in SCL,
even larger than the gold-standardMindWare device for some
participants. The dry E4 performed least well, showing the
smallest changes in SCL. We then compared wrist-based to
palm- and finger-based placements across devices. Physical
activity resulted in greater SCL changes from some of the
wrist-based placements (E3 dry, E3 wet, MindWare wet)
when compared to palm- and finger-based placements
(MindWare palm, Shimmer finger; Fig. 5). In contrast,
palm- and finger-based placements showed a higher rate of
SCRs/minute than wrist-based placements.

Electrodermal activity during evocative images

In Study 1, MindWare EDA data revealed a high rate of
SCRs—many of which were large—for three of nine partici-
pants, a modest rate of SCRs for three participants, and virtu-
ally no SCRs for three more participants (Fig. 6). All three
ambulatory EDA devices failed to detect most SCRs evident
from the MindWare device during the image viewing task in
both highly reactive individuals (participants 4, 6, and 8) and
modestly reactive individuals (participants 1, 2, and 5).
Because devices did not achieve face validity, we did not
proceed with subsequent analysis.

Data from Study 2 revealed better device performance with
palm- and finger-based placements (MindWare wet electrodes
on the palm, Shimmer dry electrodes on the fingers) compared
to wrist-based placements (MindWare wet, E3 wet, E3 dry,

Fig. 3 EDA data during physical activity squats task. Left: Example
showing the highest correspondence between the MindWare (MW)
EDA device and mobile EDA devices (participant #7). Right: Example

showing the lowest correspondence between the MindWare EDA device
and mobile EDA devices (participant #9)
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and E4 dry). This is consistent with results from wrist-based
placements in Study 1, which performed more poorly than
palm-based placements using wet sensors with the
MindWare device. Figure 7 shows representative samples of
data from two participants. In line with prior research, palm-
and finger-based placements better detected SCRs (as demon-
strated in both studies) likely due to greater concentration of
eccrine sweat glands on the palmar surface of the hand than on
the wrist (Boucsein, 2012). Due to poor measurement of
wrist-measured SCRs during evocative images in Study 1,
we introduced an additional task in Study 2 (mental math task)
to induce greater electrodermal activity and thereby better dis-
tinguish among devices by avoiding floor effects.

Electrodermal activity during mental math

As expected from prior work, the mental math task induced
measurable SCRs in more participants (8 of 11 participants)
than the evocative images task (5 of 11 participants in Study
2). Further, the mental math task led to some measurable

SCRs from the wrists of some devices for several participants.
Nevertheless, consistent with the evocative images task, palm-
and finger-based placements better detected SCRs during the
mental math task (MindWare on palm, Shimmer on fingers)
than did wrist-based placements (MindWare on wrist, E3 wet,
E3 dry, and E4 dry; see Fig. 8).

Heart rate during physical activity

The Actiwave ECG device performed well compared to our
gold-standard MindWare ECG device (Study 1 only).
Figure 9 illustrates that high-quality data were routinely ob-
served from the heart rate devices when participants were
stationary. However, when participants were squatting, data
from the heart rate devices exhibited substantial movement
artifacts when the signal was near the isoelectric line, although
R-spikes were still apparent in both the Actiwave and
MindWare ECG-based data (Fig. 9, right).

During physical activity, the ambulatory Actiwave ECG
device outperformed even the gold-standard MindWare

Fig. 5 EDAdata during physical activity from Study 2 participant 14 (left
panel) and participant 19 (right panel) which illustrates that the wrist-
based device placement evidenced greater changes in SCL compared to

devices using palm- and finger-based placements. However, palm- and
finger-based placements showed greater SCR rates/minute.

Fig. 4 Signal-to-noise ratio in EDA data during physical activity. Left:
EDA data for one participant (#6) and device (E3) during 3 minutes of
physical activity. The two vertical red lines starting at min 153.5 indicate
the 12-second segment used to compute the signal-to-noise ratio.Center:
Top plot shows raw EDA data in the same 12-second segment. The

bottom plot shows linearly de-trended data in the 12-second segment,
where standard deviation was used as a measure of noise. Right:
Average and standard deviation in signal-to-noise ratio across participants
for each device
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ECG device, presumably because the Actiwave was affixed
to the chest, whereas the MindWare device has long wires
that can result in motion-related artifacts. By comparison,
the E3 BVP did not perform well either during movement or
when participants were stationary; specifically, 5 of 10 par-
ticipants exhibited significant artifacts that precluded anal-
ysis of HR data from the E3 BVP. This is not surprising
given that the E3 relies on an optically derived BVP signal
that is much more affected by movement artifacts than an
electrical signal (i.e., ECG) collected via wet electrodes
affixed to the skin.

Quantitative IBI analyses corroborated our visual inspec-
tion of raw data: Actiwave generally outperformed the lab-
basedMindWare ECG device when a participant was engaged
in repetitive squats. Figure 10 shows that during squats,
MindWare and E3 devices failed to detect some R-spikes in

the ECG. However, when participants were still, IBI results
agreed well acrossMindWare and Actiwave devices, and, to a
lesser extent, with the E3.

Quantitatively, our results in Table 5 show the fraction of
heartbeats that were not detected by each device for each
participant. We calculated this for each participant by compar-
ing the observed number of heartbeats detected by each device
to the maximum number of heartbeats observed across all
devices. Our results show that the Actiwave performed best
(missing 3 ± 5% of heartbeats), followed byMindWare (miss-
ing 6 ± 10% of heartbeats), and lastly the E3 (missing 15 ±
15% of heartbeats) across all heartbeats for all participants
during the task. Finally, using data from a sedentary period,
MindWare exhibited the highest signal-to-noise ratio (322 ±
250), followed by Actiwave (171 ± 57) and E3 (157 ± 101;
Fig. 11).

Fig. 6 EDA data from participant 6 during the evocative image task.
Left: These panels depict data from the participant who demonstrated
the largest SCRs using the E3 and Q sensor during evocative picture
viewing. Amplitudes of SCRs measured by the lab-based MindWare
EDA device (top panels) are much larger and reveal many more SCRs

than observed with ambulatory EDA devices (bottom panels).Right: The
right panels show a zoomed-in view of a portion of data showing the
largest amplitude SCR from the left panel between the two vertical red
lines from minutes 116 to 118

Fig. 7 EDA data from Study 2 participants 17 and 21 (left and right,
respectively) during the evocative images task illustrates that wet
sensors on the palm using the MindWare device performed best,

followed by Shimmer dry sensors on the fingers. In contrast, we
observed poor performance from wrist-based placements on all devices
(E3 dry, E3 wet, E4 dry, and MindWare wet)
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Heart rate during evocative images

The heart rate data recorded during the evocative picture
task was generally of high quality for the mobile devices,
as expected, because the participants were stationary during
the task. We do not show these data because they do not
reveal any substantial differences in performance across the
devices.

Accelerometry during physical activity

We used squats as a benchmarking task to compare mobile
accelerometers as we had no gold-standard accelerometer.
Figure 12 shows that data from all accelerometers appeared
to work well in capturing the squatting motion, as each squat
can be seen individually in the accelerometry data.

Discussion

We describe a systematic benchmarking framework for
selecting, testing, comparing, and documenting differences
among commercially available, wearable physiological and
physical activity devices. We demonstrate use of this frame-
work in two intensive small-sample studies that compared 15
device configurations for 5 EDA devices, 3 heart rate devices,
and 3 accelerometers across laboratory tasks designed to elicit
either physical activity or subjective and physiological arousal
(Tables 3 and 4). Per our framework, we used qualitative and
quantitative metrics to judge device performance. Moreover,
using data from Study 1, which suggested floor effects in the
evocative images task, we instituted another evocative task,
mental arithmetic, to avoid both floor and ceiling effects in
Study 2. Next, we discuss our impressions of each device and
of the signals they produced to illustrate how one might reach

Fig. 8 EDA data during mental math task for Study 2 participants 12 and 17 (left and right panels, respectively) generally revealed superior performance
from palm- and finger-based placements (MindWare on palm, Shimmer on fingers) compared to wrist-based placements

Fig. 9 Data from HR devices in Study 1. Left: Data from participant 6
while stationary. Data are synchronized in time only to within 1 second,
so heartbeats do not perfectly align in time across devices. Right: Data

from participant 3 while performing squats. MindWare ECG and E3 BVP
were particularly affected by participant motion, whereas Actiwave ECG
data exhibited minimal motion artifacts
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conclusions about which device(s) to choose for research use
in the context of our suggested framework.

Impressions of EDA signals

We observed four key themes regarding EDA data that could
help other researchers when considering what device(s) to use
in their studies. First, wet EDA electrodes yielded greater
changes in SCL compared to dry electrodes, likely increasing
sensitivity to change. The use of electrodes with paste is stan-
dard in laboratory-based EDA measurement (Boucsein et al.,
2012). Second, finger- and palm-based measures were consis-
tently better than those taken from the wrist, corroborating
standard recommendations to record EDA activity from the
volar (inside) surface of the hands (or feet; Scerbo, Freedman,
Raine, Dawson, & Venables, 1992; Venables & Christie,
1980) as well as with more recent comparisons of hand and
wrist placement sites (van Dooren et al., 2012). Specifically,

we observed more SCRs from the gold-standard MindWare
wet sensors on the palm, followed closely by Shimmer dry
sensors on the fingers compared to wrist placements with
other devices, which were inadequate to detect SCRs. In gen-
eral, dry sensors are expected to provide smaller and noisier
signals because sensors may not consistently cover a specific
patch of skin with a given set of eccrine glands, and may slide
relative to the skin, creating movement artifacts. We also ob-
served greater changes in SCL from wrist than hand place-
ments, where we observed roughly equivalent performance
between MindWare wet sensors on the wrist and E3 wet sen-
sors on the wrist, followed closely by E3 dry sensors on the
wrist. Third, the mobile EDA devices produced more false
negatives than false positives in that the number of SCRs seen
using the mobile devices were a subset of the number of SCRs
seen when using the gold-standard MindWare EDA device.
Finally, the squats task involving physical activity induced
greater changes in SCL, whereas the tasks involving greater

Table 5 Fraction of heartbeats that were not detected in analysis of HR data during physical activity. Lower percentages (whiter cells) of missed
heartbeats reflect higher-quality results, whereas higher percentages (redder cells) reflect lower-quality results (fewer detected heartbeats)

*Data from participant 8 are not shown due to poor data quality from a poor electrode connection

**Actiwave data from participant 9 are not shown because the data were lost

Fig. 10 IBI data across devices during physical activity in Study 1. Left:
Example showing good correspondence between devices, especially
MindWare and Actiwave (participant 1). Right: Example showing the
highest quality IBI data for Actiwave, with less stable detection of R-

spikes from the ECG data during squats from both the MindWare and E3
devices (participant 5). The participant was repetitively squatting during
the period of approximately 0–30 seconds on the x-axis (time)
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subjective arousal (based on prior literature with these tasks)
induced greater changes in SCR rate.

Impressions of heart rate signals

The mobile HR devices matched the performance of a gold-
standard HR device when participants were stationary, and
one device, the Actiwave, exceeded the performance of the
gold-standard device when participants were moving. The
Actiwave ECG device is securely fixed to the torso using a
chest strap, unlike the MindWare lab-based device, which has
wires that can move relative to the sensor during participant
movement. However, one problem with the Actiwave is that
its data quality cannot be assessed during recording. Thus, we
recommend making a short recording to first verify data in-
tegrity before initiating a longer recording in the field. The E3

BVP was the only device with an optical HR sensor, and it
performed less well than the devices that recorded an ECG.
Under optimal conditions (i.e., when participants were mo-
tionless), E3 BVP data matched that of other devices, but its
performance suffered with even small amounts of movement.

Impressions of accelerometer signals

All accelerometer devices performed well when participants
were moving (during repetitive squats).

Impressions of device construction and usability

The E3 appeared to be durable and well-constructed. For de-
vices that permitted it, data viewing was easy both pre- and
post-acquisition using a Mac, iPad, or iPhone. However, the

Fig. 12 Accelerometry data for all three ambulatory devices from Study 1
participant 3 during the squatting portion of the physical activity task,
preceding seated rest. Data are shown from the axis (x, y, or z) that best

captured the squatting motion for each device. These data are
representative of the accelerometry data for all remaining participants

Fig. 11 Signal-to-noise ratio in HR data while a participant is stationary
before physical activity. Left: ECG data for one participant (#1) and
device (Actiwave) during physical activity. The two vertical red lines
around 196.5 second indicate the 1-second segment used to compute
the noise. Center: Top plot shows raw ECG data in the 1-second

segment. Bottom plot shows linearly detrended data in the 1-second seg-
ment, where standard deviation was used as a measure of noise. Right:
Average and standard deviation in signal-to-noise across participants
within each device
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Velcro wristband of the E3 sometimes loosened, so we se-
cured it using medical tape. Furthermore, some participants
reported discomfort, suggesting questionable suitability for
longer-term recordings. Using wet sensors with the E3 was
difficult because electrodes often disconnected or got stuck
together, causing data loss. The Q Sensor was reported to be
most comfortable due to its durable elastic band. The
Actiwave Cardio seemed sturdy, and participants reported it
to be comfortable, unobtrusive, and discrete as it was hidden
beneath clothing. The E4, like the E3, also appeared to be
durable and well-constructed. Both the E3 and E4 had simple,
user-friendly software for setup, data download, and data
viewing. The E4 was easy to turn on, LED signals were intu-
itive, and to our research team was the most aesthetically
pleasing. However, it was difficult for participants to place
the E4 on themselves. The Shimmer EDA had the most com-
plete and intuitive computer interface (ConsenSys program),
which displayed many options for data collection. The device
readily accepts wet EDA electrodes. However, it was difficult
to wrap the device around the participants’ fingers, the start/
stop button was hard to reach, and the LED signals were not
intuitive. Furthermore, the Shimmer sensor housing was not
as durable as the Q Sensor and Empatica (E3 and E4) devices,
which should be taken into consideration for longer-term
deployments.

Strengths of our benchmarking framework

Our suggested framework provides guidance for selecting and
comparatively evaluating ambulatory peripheral physiological
and physical activity devices. Our small-scale performance
studies have several strengths, including the use of multiple
devices and device configurations (e.g., wet vs. dry EDA
electrodes). Specifically, we compared 15 device configura-
tions across 5 EDA devices, 3 heart rate devices, and 3 accel-
erometers. We utilized multiple, well-established laboratory
tasks, including those involving either physical activity or
psychophysical arousal. We used tasks that were sufficiently
activating to distinguish performance across devices across
tasks. We also used gold-standard devices as comparators
for EDA and heart rate devices. Gold-standard comparators
are invaluable for establishing strong validity. Often, users of
wearable devices do not expect strong agreement with gold-
standard devices; however, even in this case it is important to
know to what extent a wearable does or does not deliver on
this expectation. As we illustrate, many devices are in fact
comparable to or, in some cases, better suited for a given
situation than their gold-standard counterparts (e.g., a chest
strap for ECG was better at preventing movement artifacts
than wired electrode-style ECG). Finally, we used both qual-
itative and quantitative comparisons across devices with mul-
tiple assessments for data quality, usability, and user comfort.

Our suggested benchmarking framework compliments and
extends other frameworks (e.g., van Lier et al., 2019) and
validation studies (e.g., Kasos et al., 2019; van Lier et al.,
2019) for assessing mobile devices by including consider-
ations for the broader set of decisions that researchers must
make prior to initiating a study. That is, our framework em-
phasizes selection of mobile devices based on signals of inter-
est, intended use cases, pragmatic needs (steps 1–4), and es-
tablishes an effective assessment procedure to test the
strengths and limitations of selected devices (step 5). These
initial steps are critical to include because they emphasize the
fact that validity is established (or not) only for a particular
context (e.g., setting, sample, recording interval) and does not
necessarily generalize beyond that context.

Study limitations

A limitation of our performance studies is their small sample
sizes (N = 10 in Study 1 and N = 11 in Study 2), which reduce
the possible range of variability in our results when comparing
across devices. However, validation studies are often small
because their purpose is to make a rapid assessment of device
performance with minimal time and resources invested. In
addition, each participant wore multiple devices, allowing
for within-person comparisons, thereby increasing sensitivity
to across-device differences. Further, we recorded enough da-
ta from each participant (more than 35 minutes) and across
enough conditions to make a good assessment of data quality.
Indeed, when devices produced poor quality data, it was gen-
erally evident even with relatively minimal data. Another lim-
itation in our assessments is that differences across devices
could be due to varying filter settings or other data acquisition
features (e.g., sampling rates), some of which were not made
available by the device manufacturers. Such differences can
make it difficult, if not impossible, to design identical com-
parisons among devices.

Given the above caveats, we urge readers not to rely on
results obtained in our small-scale studies when choosing spe-
cific devices, as reported data are provided only to illustrate
our benchmarking framework and the types of conclusions it
enables researchers tomake. Indeed, some devices (e.g., E3, Q
Sensor) are no longer available for purchase, and we make no
endorsement regarding any of the devices evaluated herein.
Instead, we suggest that researchers assess devices that meet
their own pragmatic, research, and data needs. Further, re-
searchers should test devices under the experimental condi-
tions and with the kinds of participants that they wish to in-
clude in their own studies.

Conclusions

We present a benchmarking framework for designing and
conducting comparative evaluation studies of wearable

Behav Res

Author's personal copy



physiological and physical activity devices that we hope will
serve as a complimentary addition to published validation
procedures in the scientific literature. In particular, our frame-
work aims to be both multi-level and multi-purpose. While
there is no one-size-fits-all approach when it comes to empir-
ically validating devices for particular research questions and
contexts, we highlight strategies and methods that may be
generally applied. Our two small-scale studies illustrate the
merits of this framework. Finally, in an effort to increase
transparency and rigor in future scientific studies, we encour-
age authors to provide evaluative, validation data as we have
done here either in supplemental materials or in published
reports when using consumer-grade or other wearable devices
that have insufficient, publicly available evidence of data
quality. In particular, we advocate for the inclusion of both
quantitative and qualitative user feedback, and remind readers
that validation is not a one-time process. Rather, a validation
assessment (for a device or measure) is best considered as an
ongoing, iterative process performed in a speficic context and
for some specific purpose.
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