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Wearable Motion-Based Heart Rate
at Rest: A Workplace Evaluation

Javier Hernandez , Daniel McDuff , Karen Quigley , Pattie Maes , and Rosalind W. Picard

Abstract—This paper studies the feasibility of using
low-cost motion sensors to provide opportunistic heart rate
assessments from ballistocardiographic signals during
restful periods of daily life. Three wearable devices were
used to capture peripheral motions at specific body loca-
tions (head, wrist, and trouser pocket) of 15 participants
during five regular workdays each. Three methods were
implemented to extract heart rate from motion data and
their performance was compared to those obtained with an
FDA-cleared device. With a total of 1358 h of naturalistic
sensor data, our results show that providing accurate heart
rate estimations from peripheral motion signals is possible
during relatively “still” moments. In our real-life workplace
study, the head-mounted device yielded the most frequent
assessments (22.98% of the time under 5 beats per minute
of error) followed by the smartphone in the pocket (5.02%)
and the wrist-worn device (3.48%). Most importantly, ac-
curate assessments were automatically detected by using
a custom threshold based on the device jerk. Due to the
pervasiveness and low cost of wearable motion sensors,
this paper demonstrates the feasibility of providing oppor-
tunistic large-scale low-cost samples of resting heart rate.

Index Terms—Physiology, wearable devices, heart
rate, ballistocardiography, smartphone, smartwatch, smart
eyewear.

I. INTRODUCTION

R ECENT advances in wearable technologies have created
new opportunities to comfortably measure and track rele-

vant health information during daily life [1]–[3]. In the context
of cardiac monitoring, for instance, many devices incorporate
cameras and LEDs to capture photoplethysmographic (PPG)
signals [4] and/or electrodes to capture electrocardiographic
(ECG) signals. Among all the sensor possibilities, accelerome-
ters are arguably some of the most pervasive ones. These sen-
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Fig. 1. Wearable motion sensors such as accelerometer and gyro-
scopes of readily available devices can be used to capture subtle cardiac
motions during relatively “still” moments during the day.

sors are traditionally used to capture large and easily observable
motions such as steps, walking and running (e.g., [5]–[7]), and
have been widely used to assess potential source of artifacts
for other measurements like PPG (e.g., [8], [9]). However, in-
creased sensor resolution has also enabled the analysis of more
subtle and difficult to observe body motions associated with
cardiac activity. For instance, several recent studies (e.g., [10]–
[13]) have demonstrated that commercially available wearable
motion sensors can be used to capture subtle vibrations of the
body associated with the beating of the heart even from periph-
eral body locations such as the head, the wrist, or the trouser
pocket. Fig. 1 shows an example of raw signals captured from
the wrist, and the pulse wave obtained after using the algorithm
described in [8].

In contrast to more standardized cardiac sensing methods
(e.g., PPG, ECG), motion-based sensing does not require the
use of electrodes or direct skin contact which is convenient
when sensing children or patients with delicate skin conditions
(e.g., burns, psoriasis). In addition, accelerometers can be
quickly scaled due to their low cost and their low energy con-
sumption in comparison with other sensing approaches [14].
However, the main drawback of such approach is that cardiac
motions are very subtle and can be easily occluded by other
body motions. Furthermore, the studies that examine cardiac
vibrations tend to measure them from the chest and in labora-
tory settings, where the cardiac vibrations are more prominent
and other body motions can be controlled. In this work, we use
ECG signals to obtain the gold standard reference and focus on
the study of motion-based signals to assess the possibility of
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using them as a complementary approach in future devices and
making health information more widely accessible.

The work presented here extends previous work and explores
the possibility of estimating heart rate from three peripheral
body locations (head, wrist and trouser pocket) in a naturalis-
tic real-life environment. In particular, the main contributions of
this work are: 1) we use methods that were previously developed
in “still” laboratory conditions [10]–[12] and evaluate them for
the first time using 1358 hours of real-life workplace data in-
volving 15 participants over five regular workdays per person,
2) we demonstrate the possibility of using a motion level indica-
tor based on the jerk of the device to effectively detect relatively
“still” moments and provide opportunistic accurate measure-
ments, and 3) we quantify the accuracy, frequency and distribu-
tion of accurate measurements across three body positions that
are commonly used for wearable devices.

The remainder of the paper is organized as follows. First,
we review relevant work on motion-based physiological sens-
ing. Second, we review the methods that are evaluated in this
work. Third, we provide details about the real-life workplace
experiment. Fourth, we review previous findings in laboratory
conditions and examine the results in our real-life dataset. Fi-
nally, we provide some discussion and concluding remarks.

II. BACKGROUND RESEARCH

Every time the heart beats, the movement of the blood
throughout the body creates tiny shifts in the center of body mass
eliciting subtle body motions. These movements (a.k.a. ballis-
tocardiographic (BCG) or seismocardiographic signals depend-
ing on the body location) were first documented in 1877 [15]
and have been extensively studied since then (e.g., [16], [17]).
While the original studies required a suspended mattress to
magnify the subtle motions, recent improvements in electron-
ics, such as increased sensor resolution and extended battery
power, have enabled their study in less constrained settings [18].
For instance, different studies have successfully instrumented a
weighing scale [19], a chair [20], and a bed mattress [21]–[24].
A common limitation of these approaches; however, is that they
only work so long the person is performing certain activity at
the instrumented location (e.g., standing on a weighting scale,
sitting on a chair, or lying down on a bed). As a result, the po-
tential availability of such measurements is limited to moments
during the day when the device(s) is available. To address this
problem, researchers have also explored the use of wearable
solutions that are in close contact with the body throughout
the day. For instance, several studies have explored strapping a
phone around the chest and using the accelerometer sensors to
monitor heart rate and breathing rate (e.g., [25]–[27]). More re-
cently, custom-made chest-worn solutions have been developed
to capture other relevant parameters such as changes in car-
diac output, contractility and blood pressure (e.g., [28]–[30]).
A different line of work has also explored the measurements
of cardiac and respiratory vibrations from more comfortable
peripheral locations. For instance, He et al. [31] created a cus-
tom ear-worn wearable device and demonstrated that it could
also capture cardiac information from the ear. In a separate se-
ries of studies, we showed that commercially available motion

TABLE I
SUMMARY OF LABORATORY FINDINGS

sensors such as those inside head-worn [10], wrist-worn [11],
[14] or smartphone devices [12] could also capture heart and
breathing rates from other peripheral locations. As cardiac mo-
tions are easily affected by large motions, most of the previous
studies focus on controlled settings with sedentary activities
(e.g., sleeping, standing still). In an attempt to quantify how this
type of measurement would generalize to more challenging real-
life settings, Rienzo et al. [32] strapped motion accelerometers
to the chest of five participants during 24 hours of ambulatory
activity and then quantified the amount of “still” moments that
would potentially qualify for cardiac analysis (the ones con-
taining little motion). The results were promising, indicating
that there were more than 100 such 5-second measurements per
hour during the day and three times higher while sleeping. How-
ever, their study only captured one day each from five people,
only considered chest measurements, and did not extract physi-
ological parameters from their data. In contrast, this work con-
siders longitudinal physiological measurement from multiple
peripheral locations in a naturalistic work setting. In addition,
we present actual physiological results and compare them with
those provided by an FDA-cleared chest-worn biosensor.

III. METHODS

A. Apparatus

This work considers the measurement of cardiac-induced
vibrations using wearable motion sensors on three peripheral
body locations (pocket, wrist and head). While smartphones
and wrist-worn devices are more pervasive today than head-
mounted devices, the latter location is becoming more popular
with the introduction of smart headphones and glasses, as well
as virtual and augmented reality headsets. In this work, we used
the Galaxy S4 smartphone (Samsung, Inc.) to capture motions
near the pants pocket, the Gear Live smartwatch (Samsung Inc.)
to capture wrist motions, and the Google Glass (Google, Inc.)
to capture head motions.

Each of the devices is equipped with both a 3-axis accelerom-
eter and 3-axis gyroscope sensor that capture linear accelera-
tions (meters/second2) and rotational movements of the devices
(radians/second), respectively. All three devices had sensor res-
olutions < = 0.0392 and < = 0.0012 for the accelerometer and
gyroscopes, respectively. Furthermore, the same sensors showed
mean absolute error < = 2.17 beats per minute in laboratory
conditions (Table I). To retrieve and log motion information,
we created a custom Android program that collected data at an
average sampling rate of 100 Hz. However, we down-sampled
the measurements to 50 Hz which provides enough resolution to
capture cardiac information [10] while minimizing virtual and
disk memory.
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B. Gold Standard Heart Rate Measurement

To collect gold standard heart rate measurements, we used a
single lead BioPatch (Zephyr Tech, Inc.) with Kendall 535 foam
pre-gelled electrodes that captured electrocardiographic activ-
ity (ECG) from the torso. The device comes with proprietary
algorithms to provide heart rate and confidence levels every
second. The confidence values range from 0 to 100 indicating
not confident to very confident, respectively. For the purpose
of this study, we used only the measurements that obtained at
least a 50% confidence level to evaluate the performance of the
motion-based methods (around 84% of the measurements in our
dataset). The BioPatch as well as the other three wearable de-
vices were synchronized with the same clock at the beginning
of each day and the information was locally stored on each of
the devices.

C. Heart Rate Estimation

To estimate heart rate from peripheral cardiac signals we im-
plemented the methods described in [10]–[12] for the head-
mounted, wrist-worn and smartphone devices, respectively.
These methods share similar processing steps but have tuned
parameters (e.g., filter orders, frequency ranges) to capture the
subtle differences at each of the locations. The main processing
steps are summarized as follows:

1) Signal Pre-Processing: The motion signals (3-axis ac-
celerometer, 3-axis gyroscope or a combination) are de-trended
with averaging filters and each of the resulting filtered signals
is z-scored. These steps remove small and slow-motion artifacts
(e.g., gyroscope drifts) and give the same weight to each of
the components, making the estimates more robust to different
device orientations.

2) BCG Isolation: A band-pass Butterworth filter, with cut
off frequencies specific to each of the locations, is used on each
of the components to isolate and amplify the BCG motions.
The minimum and maximum cut-off frequencies across devices
ranged from 4 to 13 Hz; frequencies were selected to optimize
performance at each body location.

3) Component Aggregation: The resulting filtered 3-axis
motion data signals are aggregated with a squared root sum-
mation of the components, providing the same weight to each
of the components, and making the estimations more robust to
different device orientations.

4) Pulse Wave and Heart Rate Estimation: Finally, a second
band-pass Butterworth filter with cutoff frequencies of 0.75 Hz
and 2.5 Hz (corresponding to 45 and 150 beats per minute) is
applied to extract the final pulse wave. Using this wave, the final
heart rate is estimated by finding the frequency with the highest
amplitude in the Fourier domain and multiplying it by 60 (beats
per minute).

As in previous studies, 20-second window segments with
a 75% overlap were used to divide the data streams. While
more complex methods could have been developed to attempt
to model and remove real-life motion artifacts, in this first real-
world study we wanted to replicate the procedure applied in the
laboratory experiments to establish a baseline comparison. For
part of the analysis, we selected an absolute error threshold of
5 beats per minute. While this threshold is not suited to clinical

applications that require highly accurate and continuous heart
rate estimation, it can still be used to capture resting heart rate
and overall physiological trends, and it provides comparable
performance with other wrist-worn PPG devices [33].

D. Motion Level

One of the fundamental limitations when measuring BCG
signals is that large motions can quickly obscure the subtle
BCG motions, especially when considering locations far from
the chest. To assess how the previous methods handle different
levels of daily motion, we defined the following custom value:

Motion Level=

√∑N
i=1(xi−x̄)2

N − 1
where x =

√√√√ 3∑
k=1

(
∂aclk

∂t

)2

(1)
where N is 1000 samples (20-seconds at a sampling rate of
50 Hz), and aclk indicates the k axis of the accelerometer data.
In this case, x is related to the jerk (a.k.a., jolt) of the device
which allows capturing quick motions that may negatively im-
pact the performance of the methods. Using this criterion, a
“still” segment containing only BCG motion will show sig-
nificantly smaller motion levels than segments with large and
apparent motions such as those of daily activity. To use this
value for the analysis, we will define different levels of maxi-
mum acceptable motion and only use the segments with values
at or below those levels.

IV. EXPERIMENTAL PROTOCOL

Fifteen participants (7 females and 8 males) were recruited
to participate in a real-life study in the context of daily life
stress measurement. As part of the study, participants were in-
structed to carry or wear throughout the full workday, for five
days of work, the following four devices: head and wrist-worn
motion sensors, a smartphone, and a physiological sensor on the
chest. During each of the days, participants received on average
four prompts on each of the devices to request information about
their stress levels. Each of the prompts lasted around 50 seconds
with some differences across devices (see more details in [34]).
When not answering the questions, participants were not al-
lowed to interact with the devices, but still had to wear or carry
them throughout their workday. As the smartwatch device had
limited battery life (around 6 hours when running our logging
and prompting software), participants were asked to charge the
three devices during their lunch break. To ensure that the stud-
ied devices were in close proximity to the body, the pieces of
data belonging to times when participants were responding to
prompts or the devices were charging were excluded from the
analysis. The protocol was pre-approved by the Institutional Re-
view Board of the Massachusetts Institute of Technology and
participants received compensation of a $200 Amazon gift card
upon successful completion of the study.

Thirteen of the participants were graduate students, one
was a research assistant, and one was an administrative staff
member of a large technical research laboratory. While a
large part of the participants’ work happened in front of the
computer, there were a wide variety of active events throughout
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the study, including final exams, classes, public presentations,
work meetings and important deadlines. The average age of
the group was 29 years with a minimum of 18 and a maximum
of 42 years. The average weight was 69.39 kilograms with
a minimum of 40.82 and 117.93 kilograms, and the average
height was 1.7 meters with a minimum of 1.5 and a maximum
of 1.92 meters. All the participants described themselves as
healthy without known cardiac, respiratory or musculoskeletal
problems. However, two of the participants developed respira-
tory problems throughout the study (coughing) and paused the
data collection for a couple of days.

V. RESULTS

This section provides an overview of the findings of the study.
We start by reviewing some relevant information from the lab-
oratory studies to help contextualize the rest of the analysis.
Then, we systematically evaluate the performance of each of
the three wearable BCG methods during real-life. Finally, we
quantify the distribution and frequency of “still” moments for
each of the devices in our study.

A. Laboratory Overview

This work leverages methods developed in laboratory condi-
tions and tests them in a real-life work environment. For each
of the laboratory experiments, 12 participants were recruited to
hold three body postures (standing up, sitting down and lying
down) during two separate minutes (one before, and another
after, physical exercise) while capturing motion data from each
of the considered locations. Table I summarizes the best results
obtained for each of the studies in the context of heart rate esti-
mation. While each of the previous analyses explored different
modalities and sensor combinations, the table includes only the
best performing combination and the mean absolute error when
estimating heart rate. To simplify the analysis, the rest of the
results presented here will consider only the best performing
combination for each of the locations. That is, we will use the
accelerometer for the smartphone, a combination of accelerom-
eter and gyroscope for the wrist-worn device, and the gyroscope
sensor for the head-worn device.

Using the motion level defined above, Fig. 2 shows the his-
togram of motion values derived from accelerometer data ob-
served during each of the laboratory experiments. As can be
seen, the distribution of motion levels is very similar for the
three devices, but their average and range varied depending on
the location. In particular, the average motion levels were 0.0146
(standard deviation = 0.0049), 0.0236 (STD = 0.0077), and
0.0501 (STD = 0.0215) for the pocket, the wrist, and the head
locations, respectively. These differences are to be expected as
both the wrist and the smartphone are in more peripheral loca-
tions, further away from the chest where the motions are more
prominent. The following sections mainly focus on the motion
ranges of each device to help improve the resolution of the
results and better study the impact of different motion levels.

B. Real-Life Heart Rate Estimation

After excluding segments of data when participants were
charging the devices and not providing self-reports, there

Fig. 2. Distribution of motion levels observed in the laboratory experi-
ments for the pocket (top), wrist (middle), and head (bottom) accelerom-
eter sensors during stationary body positions. N: 648 per histogram.

were around 481, 441 and 435 hours for each of the sensors
inside the smartphone, the wrist-worn, and the head-worn wear-
able devices, respectively. On average, each participant provided
around 6 hours (STD = 0.91) of useful recordings per day per
sensor, and around 30 hours (STD = 4.7) by the end of the study.
The differences across devices were due to several factors such
as device batteries running out, forgetting to charge some of the
devices, and occasional malfunctioning of some of the devices.
After segmenting the data into 20-second pieces, we obtained
a total of 920 K segments for each of the two sensor modalities
(gyroscopes and accelerometers). From these segments, the
FDA-cleared device yielded heart rate estimations with a confi-
dence level above 50% for around 84% of them. Therefore, we
consider around 771 K segments for this part of the analysis.

Fig. 3 shows the average mean absolute error (blue lines)
and the standard errors (green lines) in beats per minute across
the 15 participants (black dotted lines) for different maximum
motion levels. In addition, the red-dashed line indicates the mo-
tion level threshold for an average absolute error of 5 beats per
minute. As can be seen, there is large variability across par-
ticipants, devices, and motions levels. However, all the curves
show a decrease in terms of performance when increasing the
motion level, supporting that our motion level estimation ef-
fectively captures the negative impact of motion in the studied
methods. Among the three devices, the head-worn device is the
one that provided the lowest mean absolute errors for the con-
sidered motion ranges, followed by the wrist-worn, and then
the smartphone. These differences are consistent with the dif-
ferences observed in the laboratory.

While developed in less challenging settings, the detection
methods were still able to yield an average mean error of 5 beats
per minute for a certain motion level, which can be further
reduced by lowering the motion level thresholds. However, there
were some participants for whom the methods did not work as
well, even for low motion levels. These individual differences
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Fig. 3. Relationship between algorithm performance and amount of motion for the pocket (left), wrist (center), and head (right) locations. Each
graph shows the average mean absolute error (blue line) and standard error (green lines) across all participants (dotted black lines), as well as the
values associated with a 5 beats per minute threshold (red dashed line). As expected, algorithm error deteriorates when increasing the amount of
motion. The total number of considered 20-second segments to generate each of the graphs was 282 K, 243 K, and 245 K, respectively.

are positively correlated with the amount of motion each person
experienced during their daily activity. Thus, participants who
remained sitting at their desk in front of the computers for a
majority of the time, yielded the lowest mean absolute errors
and participants who were more active during their day usually
yielded the worst performance.

C. Distribution of “Still” Moments

The previous section demonstrates that it is possible to op-
portunistically and accurately estimate the heart rate of people
when the amount of motion is relatively small. This section
studies the frequency with which such opportunities happened
during daily life in our study.

Since the data were segmented into 20-second segments with
an overlap of 75%, there is the potential to generate a new heart-
rate estimate every 5 seconds. Indeed, each 5-second piece is
potentially covered by 5 sliding 20-second segments. To bet-
ter capture a potentially usable assessment, we assigned each
5-second segment to the smallest motion level associated with
one of the data windows. Fig. 4 shows the distribution of po-
tential assessments for different maximum motion levels when
considering the 1358 hours of collected data, which includes
all the confidence levels of the FDA-cleared device. To better
understand the differences across devices, Fig. 4 also shows a
red-dashed line indicating the motion levels that yielded an av-
erage mean absolute error of 5 beats per minute. The specific
maximum motion levels were 0.0103, 0.0215, and 0.0619 for
the pocket, wrist and head locations, respectively, which yielded
around 5.02% (STD = 3.91), 3.48% (STD = 3.16), and 22.98%
(STD = 11.19) of potential assessments for each of the devices.

As can be seen, the availability of “still” segments during the
day varies across devices and participants, but it is the largest for
the most participants when measured via the head-worn device.
The wrist location experienced a greater frequency of motion
and, therefore, fewer segments of “still” data. Finally, the slope
of the curve for the pocket location is steeper than the other
ones indicating that a significant portion of the segments where
it estimated heart rate (around 40%) were within a very small
range of motion levels (between 0.01 and 0.028). Among the
three sensor locations, the head-worn sensors showed the largest
amount of “still” samples suitable for estimating heart rate over
the different days.

Considering the previous motion levels, Fig. 5 shows the
distribution of “still” segments for the pocket (left), the wrist
(center), and the head (right) locations. Each of the rows indicate
data from a different participant and grey rectangles are used
to separate the different days. Black dots indicate that at least
one isolated 5-second piece qualified for the assessment dur-
ing that time. Therefore, a more continuous measurement can
be provided whenever there is a larger cluster of dots, which
indicates a higher distribution of potential assessments (i.e., in-
creased blue area). As expected, these clusters tend to concen-
trate in moments when lower motion levels are observed. These
data represent the varying activity levels observed throughout
the day. The average number of opportunistic measurements
per day was 236 (STD = 193), 147 (STD = 131), and 978
(STD = 550) when considering the pocket, the wrist and head
locations, respectively. However, it is important to note that
different devices collected data for different amounts of time.
While there is certainly correlation on the occurrence of mea-
surements across devices, there are also moments in which one
of the devices outperforms the others. Fig. 6 shows examples
of clean and noisy heart rate estimations from two participants.
The number of opportunistic measurements for these samples is
931 (top) and 1427 (bottom) with mean absolute errors of 2.87
(STD = 3.38) and 3.77 (STD = 7.09) beats per minute, respec-
tively. As can be seen on the top graph, different body loca-
tions can offer complementary information and can effectively
capture a wide range of heart rates (from 60 to 90 in this ex-
ample). However, quick increases of heart rate associated with
large motions (e.g., from 11.30 to 12.30) cannot be captured as
they quickly overpass the motion level thresholds. The bottom
graph shows that the measurements are closely aligned with the
gold standard and can capture moderate fluctuations in heart
rate. However, this example contains many outliers, especially
around the 50 to 70 beats per minute range. This type of outliers
is partly to be expected as the methods did not enforce any type
of temporal consistency.

VI. DISCUSSION

This work has evaluated the possibility of using low-cost
wearable motion sensors at three peripheral body locations
(head, wrist and pocket) for workplace heart rate monitor-
ing. Considering data collected from 15 individuals during five
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Fig. 4. Percentage of 20-second segments with different amounts of motion level for the pocket (left), wrist (center), and head (right). Each graph
shows the average mean absolute error (blue line) and standard error (green lines) across all participants (dotted black lines), as well as the values
associated with a 5 beats per minute threshold (red dashed line). As can be seen, the same threshold yields different distributions when considering
different devices, with the head location yielding the most useful data (22.98%). The total number of considered hours to generate each of the
graphs was 481, 441 and 435, respectively.

Fig. 5. Temporal distribution of potential assessments from motion sensors in the pocket (left), wrist (center), and head (right) locations, when
considering maximum motion levels that yielded error < = 5 beats per minute. Each row represents a different participant, grey rectangles indicate
different days, blue areas indicate aggregated distribution, and black dots indicate separate heart rate assessments. The average amount of collected
data was around 30 work hours per participant with a daily average of opportunistic heart-rate measurements of around 236, 147, and 978 for the
pocket, the wrist and head locations, respectively.

regular workdays per person, we observed that accurate oppor-
tunistic heart rate assessments can be obtained from the three
locations. However, the head-mounted device yielded signifi-
cantly more frequent accurate assessments (around 22.98% of
the time under 5 beats per minute of error) and, to a lesser ex-
tent, the smartphone and the wrist-worn device yielded accurate
assessments for around 5.02% and 3.48% of the time, respec-
tively. While these results may suggest that head-worn devices
are the most promising location among the three considered, it
is important to consider experimental factors.

While the evaluation presented in this work includes natural-
istic data of several people during several days, the findings are
still dependent on the specific experimental setting. In our case,
we considered participants who spent a large portion of their
days working in front of computers. This activity may yield

better results for head-mounted devices due to the stillness of
the head while looking at the computer, and it may also yield
worst results for wrist-worn devices due to the constant com-
puter typing. People working in different contexts (e.g., surveil-
lance, transportation) or performing different types of activities
(e.g., sleeping) will have different patterns of physical activ-
ity. In addition, this study relied on state-of-the-art hardware at
the time of the study, but it is important to note that different
hardware specifications were used at each of the body locations.
While we expect the impact of these differences to be small, a
more unbiased comparison would consider identical hardware
across body locations. Another relevant factor in our study is
that participants received a significant monetary reward. While
this compensation allowed us to minimize study drop-outs and
increase the quality of the data, it is important to note that
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Fig. 6. Clean (top) and noisy (bottom) opportunistic heart rate estimations for two participants using motion sensors in the pocket (red circles), on
the wrist (black diamonds), and on the head (blue squares) during “still” moments. The gold standard (grey circles) were captured with a chest-worn
FDA-cleared ECG device.

real-life participants may not be similarly motivated to carry the
devices in the same way as described in this study. For instance,
female users may not necessarily carry their smartphone in their
trousers [34]. Finally, our study considers healthy individuals
without known cardiac, respiratory or musculoskeletal prob-
lems which allowed us to partially control unwanted sources
of artifact. Future studies, however, will need to consider these
populations as they are the ones that can more directly benefit
from opportunistic physiological assessments.

To perform the evaluation, we relied on three methods which
were previously developed in the context of controlled labo-
ratory scenarios. While the results presented in this study are
very promising, they were not as accurate as those observed in
the controlled settings. This difference is to be expected when
considering the complexity of daily activity and the amount of
motion associated with it. While we expect some of these mo-
tions could be detected and corrected, other types of motion are
subtler and more challenging to correct. For instance, a person
working at the computer can artificially simulate motions like
the beating of the heart when tapping their feet due to nervous-
ness or when following the beat of background music. In this
case, one of the main research challenges will be to correctly
detect the few accurate heart rate estimates among the larger
sample of noisy estimates. In this work, we have shown that a
simple motion level can effectively discriminate between differ-
ent error levels, but more complex approaches (e.g., [18], [35])
may be used to increase the frequency of opportunistic assess-
ments. As the analysis presented in this work mostly focuses
on “still” moments during the day, the measurements are more
strongly associated with resting heart rate. Future work will
need to consider a more in-depth analysis of the measurements

at different temporal resolutions (e.g., day, hour) to better assess
the potential applications.

Finally, this work has considered wearable motion sensors at
three different body locations that offer a good representation
of the current landscape of existing wearable solutions but sig-
nificantly differ in terms of availability. It is estimated that the
number of smartphones users worldwide will reach 2.87 billion
by 2020 [36]. Even if these devices could only provide one or
two opportunistic assessments each day, it could quickly gen-
erate a large amount of health data with potentially invaluable
medical importance. In addition, different people may be more
willing or able to carry different types of devices. Some of the
relevant factors include whether users already wear devices with
a similar form factor (e.g., glasses, watches), whether they are in
social settings where a device may have stigma, and/or whether
there is some perceived benefit from carrying the devices [34]. In
the future, however, we expect to have more varied form-factors
(e.g., jewelry, earrings, T-shirt buttons) that could contain low-
cost motion sensors that provide additional benefits for different
contexts. Research studying the origin of cardiac signals (e.g.,
[37], [38]) and how they propagate throughout the body (e.g.,
[39]–[41]) may provide more insights toward the development
of general purpose adaptive methods.

VII. CONCLUSION

Wearable motion sensors are ubiquitous and offer a unique
opportunity to not only track apparent behavioral activity but
also provide comfortable opportunistic low-cost physiological
assessments of resting heart rate during the day without the
expense of a dedicated heart-rate sensor such as a photoplethys-
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mograph. This work examined the ability of three consumer
motion-sensing devices, worn in the pocket, on the wrist or on
the head, to obtain automated assessments of heart rate in the
natural workplace. While there are still many challenges to be
addressed, and motion-based estimation is not intended to re-
place continuous clinical assessments or to be used in medical
decision-making, we have shown it is possible to obtain well-
ness samples of resting heart rate through the use of low-cost and
energy-efficient motion sensors, worn in daily life, an advance
that could potentially make such assessments more frequent and
easily available.
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